skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Coleman, Drew S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Oligocene Latir magmatic center in northern New Mexico is an exceptionally well-exposed volcanoplutonic complex that hosts a variety of magmatic-hydrothermal deposits, ranging from relatively deep, F-rich porphyry Mo mineralization to shallower epithermal deposits. We present new whole-rock chemical and isotopic data for plutonic rocks from the Latir magmatic center, including extensive sampling of drill core samples of intrusive rocks from the Questa porphyry Mo deposit. These data document temporal chemical trends of porphyry-related mineralization that occurred after caldera-forming magmatism and during postcaldera batholith assembly. Silicic magmas were generated multiple times throughout the history of the Latir magmatic center, but few are associated with the formation of a mineral deposit. Whole-rock trace element ratios and Sr, Nd, and Pb isotope compositions vary throughout the protracted history of silicic magmatism. The caldera-forming ignimbrite and early phase of postcaldera intrusions are unmineralized, more enriched in high field strength elements, and generally contain less radiogenic Sr and Pb and more radiogenic Nd than later intrusions. The Questa porphyry Mo deposit formed immediately after the most isotopically primitive phase of the batholith was assembled, ruling out simple reworking of juvenile mantle-derived crust as the source for mineralizing magmas. Rhyolite dikes associated with polymetallic sulfide deposits intruded ~800 k.y. after Mo mineralization, and Nd isotope data indicate that these dikes are associated with different batches of magma and are unrelated to the Mo-mineralizing intrusions at the Questa mine. Together, these data indicate that the source of magmas changed significantly throughout the 10-m.y. history of the magmatic center. We assess multiple genetic models for porphyry-related magmatism against this data set, favoring models with discrete periods of magma genesis from a deep hybridized zone in the lower crust giving rise to the punctuated periods of mineralization. These observations suggest that the formation of mineral deposits within a central magmatic locus is likely the result of the piecemeal assembly of individual hydrothermal-magmatic systems, and that distal and younger polymetallic mineralization commonly observed near known porphyry deposits represents decoupled processes. 
    more » « less
  2. Phosphate rock bears both geologically and environmentally significant information. Rare earth elements and yttrium (i.e., REY) characteristics have been commonly used for reconstructing the redox conditions of depositional environments of and the effects of post-depositional diagenetic alteration on phosphate rock. In addition, phosphate rock is typically enriched in a range of trace elements such as uranium (U) and cadium (Cd) that can be dispersed as contaminants into the environment with phosphate mining and phosphate fertilizer application. Here we report the lead (Pb) isotope compositions combined with Pb and REY concentrations of both global sedimentary and igneous phosphate rocks, aiming to evalute the geological origin of phosphate rocks over time and the potential of using them for environmental tracing. Phopshate rocks samples analyzed in this study were sourced from major economic phosphate deposits in the world, including China, Southern Tethys (e.g., Morocco, Tunisia, Israel), the U.S., India, South Africa and Russia. Our results show a wide range of 208Pb/204Pb (35.70 to 60.58), 207Pb/204Pb (15.20 to 18.25), and 206Pb/204Pb (16.369 to 71.806) ratios in phosphate rocks, with sedimentary phosphate rocks being significantly more radiogenic than igneous rocks. The majority of the sedimentray phosphate rocks show a notable isotopic overprinting by non-radiogenic terrestrial Pb, except for those from Israel and Morocco that have the most radiogenic Pb isotope compositions. Correspondingly, phosphate rocks with more radiogenic Pb isotope ratios show relatively pristine seawater REY features, likely suggesting their preservation of the original oxic seawater conditions and/or minimal diagenetic alteration. In contrast, phosphate rocks with less radiogenic Pb isotope compositions show REY indications for more anoxic seawater redox conditions and/or greater diagenetic alteration. We further evaluate the potential utility of Pb isotopes for tracing the associated contamination with phosphate rock mining and fertilizer application in the environment. In most cases, the radiogenic Pb isotope composition of phosphate rocks and corresponding P-fertilizers is distinctive from both natural crustal Pb and major anthropogenic Pb sources (e.g., Pb ore deposits and pesticides), which provides a great advantage for applying Pb isotopes as environmental tracers for metal(loid) contamination from phosphate sources. The combination of Pb isotope ratios and REY proxies could further constrain the Pb source discrimination. Overall, this study provides new Pb isotopic and REY geochemical data on global phosphate rocks and fertilizers, which lays the groundwork for future regional and local studies on both their geological and environmental implications. 
    more » « less
  3. Abstract U-Pb geochronology by isotope dilution–thermal ionization mass spectrometry (ID-TIMS) has the potential to be the most precise and accurate of the deep time chronometers, especially when applied to high-U minerals such as zircon. Continued analytical improvements have made this technique capable of regularly achieving better than 0.1% precision and accuracy of dates from commonly occurring high-U minerals across a wide range of geological ages and settings. To help maximize the long-term utility of published results, we present and discuss some recommendations for reporting ID-TIMS U-Pb geochronological data and associated metadata in accordance with accepted principles of data management. Further, given that the accuracy of reported ages typically depends on the interpretation applied to a set of individual dates, we discuss strategies for data interpretation. We anticipate that this paper will serve as an instructive guide for geologists who are publishing ID-TIMS U-Pb data, for laboratories generating the data, the wider geoscience community who use such data, and also editors of journals who wish to be informed about community standards. Combined, our recommendations should increase the utility, veracity, versatility, and “half-life” of ID-TIMS U-Pb geochronological data. 
    more » « less
  4. Ian Carmichael wrote of an “andesite aqueduct” that conveys vast amounts of water from the magma source region of a subduction zone to the Earth’s surface. Diverse observations indicate that subduction zone magmas contain 5 wt % or more H2O. Most of the water is released from crystallizing intrusions to play a central role in contact metamorphism and the genesis of ore deposits, but it also has important effects on the plutonic rocks themselves. Many plutons were constructed incrementally from the top down over million-year time scales. Early-formed increments are wall rocks to later increments; heat and water released as each increment crystallizes pass through older increments before exiting the pluton. The water ascends via multiple pathways. Hydrothermal veins record ascent via fracture conduits. Pipe-like conduits in Yosemite National Park, California, are located in or near aplite–pegmatite dikes, which themselves are products of hydrous late-stage magmatic liquids. Pervasive grain-boundary infiltration is recorded by fluid-mediated subsolidus modification of mineral compositions and textures. The flood of magmatic water carries a large fraction of the total thermal energy of the magma and transmits that energy much more rapidly than conduction, thus enhancing the fluctuating postemplacement thermal histories that result from incremental pluton growth. The effects of water released by subduction zone magmas are central not only to metamorphism and mineralization of surrounding rocks, but also to the petrology and the thermal history of the plutons themselves. 
    more » « less